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Motivation

Octupole deformation  is a relevant concept in nuclear structure of atomic nuclei

● Next multipole moment after quadrupole (L=3)

● Breaks reflection symmetry (parity). Pear shape 

● Parity doublets and alternating parity rotational bands

● Strong E3 electromagnetic transitions (E1 also but caution applies)

● Octupole ‘’magic’’ numbers: 34, 56, 88, 134 and 196  

and also in other fields of research

● Devise experiments looking for beyond the standard model of particle physics 
(electric dipole moment of elementary particles)

● Interpretation of heavy-ion collision results regarding the flow distribution in the 
transverse plane after quark-gluon plasma creation



  

Octupoles 0.0

The shape of many nuclei is deformed in the intrinsic (body fixed) frame (a mean field 
artifact). Wave function factorizes: deformed x orientation

Deformation described in terms of  multipole moments 

The restoration of  broken symmetries via orientation fluctuations (transformation to the 
LAB frame) generates a “band” for each intrinsic state. Band members labeled by the 
quantum numbers of the restored symmetry

Deformation L Symmetry Bands Transitions
Quadrupole 2 Rotational Rotational (J) E2
Octupole 3 Parity Parity doublets (π) E1,E3

AMEDEE web page @ CEA

Order parameters



  

Octupoles 1.0 (Octupole deformation)

● Octupole deformation shows up as minima of EHFB(Q30) (2MeV depth at most )
● The largest the depth of the octupole well the largest the def at the minimum  
● E(Q30)=E(-Q30) (Interaction invariant under parity)
● In the LAB frame: parity doublets in the limit when there is  no tunneling through the barrier
● Alternating parity rotational bands (def. nuclei)
● Strong E3 transition strengths 

Static
octupole
deformation

Dynamic
octupole 
deformation

Order parameter



  

Permanent octupole deformation

Octupole magic numbers

● 34 (g9/2-p3/2)
● 56 (h11/2-d5/2)
● 88 (i13/2-f7/2)           Δj=3   
● 134 (j15/2-g9/2)
● 196 (k17/2-h11/2)Gogny D1S HFB results

Y. Cao et al Phys Rev C102, 024311 (2020)

Static octupole correlations

LM Robledo and GF Bertsch, Phys. Rev. C 84, 054302

40 ?



  

Permanent octupole deformation

Octupole magic numbers

● 34 (g9/2-p3/2)
● 56 (h11/2-d5/2)
● 88 (i13/2-f7/2)
● 134 (j15/2-g9/2)
● 196 (k17/2-h11/2)Gogny D1S HFB results

Y. Cao et al Phys Rev C 102, 024311 (2020)                             HFB means non-relativistic with Skyrme interactions    

40 ?



  



  

Symmetry restoration and dynamic octupole correlations

Parity symmetry is broken when β3≠0

Taking the appropriate linear combination of the  two shapes the symmetry is restored

The application of the symmetry 
operator to the intrinsic wave function 
changes the orientation

The procedure works because of the special properties (group theory) of the 
symmetry operator 

Parity restoration is so simple because it is a discrete symmetry.  The symmetry 
group is made of two elements: identity and parity and it is Abelian (1D irreps). Life 
gets a bit more involved for continuous symmetries … 
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Both states have the same intrinsic energy



First step beyond the mean field: Parity projection

Excitation energy of K=0- band

Ground state correlation energy: non zero for reflection symmetric mean field 
ground states. Dynamic correlations imply non-zero intrinsic octupole moment even 
in 208Pb !  

Dynamic octupole correlation energies                        Static correlations

Static versus dynamic



Second step beyond mean field: configuration mixing

Flat energy surfaces imply configuration mixing can lower the ground state energy

Generator Coordinate Method (GCM) ansatz

The amplitude                  has good parity under the exchange 

Parity projection recovered with 

Energies and amplitudes solution of the Hill-Wheeler equation

Collective wave functions

Under some conditions in the norm the complicated HW equation reduces to 
a collective Schrodinger-like equation where Q30 is the coordinate



Second step beyond mean field: configuration mixing

Collective wave functions



  

Static and dynamic octupole correlations

Static octupole correlations are only present in a 
very restricted set of nuclei

Dynamic octupole correlations associated to 
symmetry restoration (parity) are present 
everywhere ( represent around 0.8 MeV)

Dynamic octupole correlations associated to 
fluctuations in the octupole degree of freedom are 
present everywhere ( around 1 MeV extra)

 Beyond mean field effects are relevant for binding 
energies

Calculations were restricted to a limited set of 
around 800 even-even nuclei not too far from the 
stability line. Exploratory calculations in very 
neutron rich nuclei indicate the same trend.
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Some reflections

It would be very interesting to analyze the changes in the spatial matter 
distribution after symmetry restoration and configuration mixing

Not a common chore in standard nuclear structure calculations

Computationally intensive

Analyze the role of LAB density in the Glauber Montecarlo Model used 
to study the flux anisotropies 

Perhaps it could be the clue to solve the 96Zr puzzle

● HI analysis point to an octupole deformed nucleus
● Nuclear structure also point to strong octupole correlations
● Calculations point to dynamic instead of static octupole correlations



  

Quadrupole-Octupole coupling: 96Zr and 96Ru

Zr puzzle: 96Zr, lowest 3- energy in the N=56 isotonic chain and largest B(E3) 
96Ru is spherical (but 098Zr deformed)



  

State of the art microscopic description

Our goal is to describe octupole correlations in an unified framework to treat in the 
same footing vibrations, octupole deformed states and any intermediate situation

● The use of an “universal” interaction (EDF) is required for predictability

● Based on  Hartree Fock Bogoliubov (HFB)  intrinsic states. Must be flexible 
enough to accommodate many physical situations like quadrupole and octupole 
coupling

● Symmetry restoration:

➢ Angular momentum projection 
➢ Particle Number projection
➢ Parity projection

● Configuration mixing

Can be avoided if the nucleus is strongly 
deformed (Rotational model) 



  

144Ba

● Weakly deformed nucleus (both quadrupole and 
octupole) with strong Q2-Q3 coupling

● Good agreement for the 1- excitation energy
● Wrong moments of inertia for rotational bands 

(understood: missing cranking-like states (*))
● Good transition strengths E2 and E3

Recent experimental data from B. Bucher et al PRL 116, 112503 (2016)

(*) PRC62, 054319; PLB746, 341



  

Thank you for your attention !
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Octupoles 1.0 (Vibrational states)

● The nucleus can vibrate around its equilibrium position 

● Vibration characterized by the new dynamical variables

● Harmonic oscillator like quantum states (phonons) carrying angular momentum L and parity 
π=(-1)L

● The oscillator frequency and characteristic length depend upon two parameters: spring 
constant and inertia. The latter is not easy to determine in mean field theories.

● Energies and transition strength depend on those two parameters.

● Octupole vibration corresponds to L=3 and the corresponding phonon carries 3 units of 
angular momentum  

● Well defined only in weakly 
deformed nuclei ?

● Quadrupole-Octupole coupling
● Two octupole phonons and 



  

Preliminaries

                Single particle model                                            Collective model

Mean field approximation and spontaneous symmetry breaking

Symmetry restoration to recover quantum numbers

In the strong symmetry breaking regime observables can be computed in simple yet 
approximate way 

The two pillars of our present understanding of nuclear structure 



  

Microscopic description: the force

Parameters fixed by fitting some general nuclear matter properties and a few values 
from finite  nuclei (binding energies, s.p.e. splittings and some radii information).

D1S: surface energy fine tuned to reproduce fission barriers

D1N: Realistic neutron matter equation of state reproduced

D1M: Realistic neutron matter + Binding energies of essentially all nuclei with 
approximate beyond mean field effects

Pairing and time-odd fields are taken from the interaction itself

The Gogny force is a popular choice but others (Skyrme, relativistic, etc) are possible



  

Other observables

Systematically too high excitation energies: other 
degrees of freedom are important, specially in 
octupole soft systems

B(E1)s not considered in this analysis because 
they are less collective (see below)

B(E3)s show a systematic deviation for not so 
well quadrupole deformed systems. 

The rotational formula is not valid, as expected



  

B(E1) strength of 234U

In collaboration with UWS’ Dave O’ Donnell



  

Improvements: Quadrupole – Octupole coupling
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Improvements: Quadrupole – Octupole coupling
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Microscopic description: Intrinsic HFB configurations 

● Configurations at and around the HFB minimum
● Axially symmetric HFB with constraints on Q20 Q30 
● Efficient second order gradient solver
●  Finite range Gogny (D1S, D1M, etc)

The  example corresponds to 144Ba with moderate quadrupole-octupole mixing



  

Symmetry restoration: Continuous symmetries

Particle number and angular momentum restoration involve continuous symmetries

And “linear combinations of rotated intrinsic states” become integrals

Linear combination       weight      rotated intrinsic state

This “simple” structure is due to the Abelian character of the underlying group U(1)

In the angular momentum case the symmetry group is SU(2) (not Abelian)

We assume axial symmetry and good signature in the intrinsic wave function.

Natural parity selection rule



  

Angular momentum  contents of the intrinsic states

● |<PJ >|2 is the probability of finding 
angular momentum J in the intrinsic 
state

● The 3- configuration is dominant 
for negative parity states and 
spherical nuclei

● For deformed nuclei, the ordering 
of the negative parity states is 
similar to the one of positive parity 
states

● In the strong octupole deformation 
limit, both positive and negative parity 
amplitudes exactly follow an 
interwinding pattern (alternating 
parity rotational bands)

● The model contains the right physics 
to describe both vibrations and 
rotations at the same time.

3- octupole phonon

Alternating parity rot band



  

Configuration mixing

The last step is configuration mixing

This is a Projection After Variation (PAV) procedure because the intrinsic states 
are determined by solving the HFB equation and then projected

The f amplitudes of the GCM are obtained by solving the  Schrodinger equation 
in the reduced configuration space (Hill-Wheeler equations for each J, π)

The final wf has good quantum numbers J, N, and  π. This is very important as  
electromagnetic transition strengths and their associated selection rules strongly 
depend on them. To compute transition strengths we need the overlaps of the 
EM transition operators  

In the present approach, the assumption of the “rotational formula” often used 
to compute transition strengths is not required !

The “rotational formula” B(EL) α βL
2 fails in weakly deformed nuclei and in 

computing transitions among different bands



  

144Ba: Mean field and projection

Gogny D1S calculation (one day in a 600 node computer farm)

R.N. Bernard, L.M. Robledo and T.R. Rodriguez
Octupole correlations in the nucleus 144Ba described with symmetry conserving configuration mixing calculations
Phys. Rev. C 93, 061302 (R) (2016)

Intrinsic energy Projected LAB energies



  

144Ba: GCM collective amplitudes

Collective amplitudes:
● Follow the topology of the energy surface
● Symmetry restrictions (wf zero if π=-1 and β3=0)
● Fairly constant as a function of J (collective rotational band)
● Positive parity amplitudes evolve to match negative parity 

ones (stabilization of octupole deformation at high spins)



  

144Ba: double octupole phonon



  

144Ba: double octupole phonon



  

144Ba: double octupole phonon



  

Other Ba isotopes
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Other Ba isotopes

● Larger quadrupole-octupole mixing in 142-144Ba
● Coll w.f. peaked at Q30 different from zero ! Not 

so well correlated with EHFB  topology: 
consequence of dynamical quantum 
correlations

Responsible for  enhanced 
B(E3) in N=90, 92, 94



  

226Rn

Working now in the actinide region: more nuclei to come 



  

Other Ba isotopes

Bucher et al (~48 Wu)

Too small moments 
of inertia

Enhanced 
octupolarity



  

Other approaches

spdf IBM hamiltonian with microscopic input

K.Nomura et al.  PRC



  

Conclusions

● Our computational framework  reproduces quite nicely many of the experimental 
features of octupole deformed nuclei in the Ba (and other) regions 

● Its microscopic foundation avoids uncontrolled assumptions of phenomenological 
models (vibrational or octupole deformed) as well as approximations (like the 
rotational formula for transition strengths)

● Its use of “global” EDFs like Gogny allows its use in other regions of the periodic table
(work in progress!)

● Computationally demanding but still within the reach of modest computational facitilites

● It can be extended to consider the coupling with other relevant degrees of freedom like 
pairing or single particle excitation modes (work in progress!)

ToDo

● Release axial symmetry assumption

● Release time reversal invariance assumption (cranking)

● Extend to odd mass nuclei



  

Collaborators 

This work is the result of a collaboration with

● Tomás R. Rodríguez 
(UAM, tomas.rodriguez@uam.es)

● Remi Bernard 
(former postdoc@UAM, now at CEA)
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